Светящиеся растения в природе
Derevynidom.ru

Портал садовода

Светящиеся растения в природе

Светящиеся растения: экономия на освещении улиц и стильный ландшафтный дизайн

Собака Баскервилей, своим светящимся в темноте оскалом доведшая до смерти сэра Чарльза Баскервиля и чуть было не уморившая Генри Баскервиля в романе Артура Конан Дойла, была обыкновенной собакой. Светилась она только благодаря злому умыслу и фосфору на морде. Однако живые организмы, самостоятельно светящиеся в темноте, действительно существуют.


Учёные пытаются создать светящиеся растения

Бактерии, медузы, моллюски, планктон, светлячки, скорпионы, грибы (в том числе и привычные опята). Сегодня учёным известно более восьми сот светящихся живых организмов. Большинство из них обитает в морях и океанах. Но вот представителей царства Флоры, обладающих способностью к биолюминесценции, учёные пока не обнаружили. Однако человек не привык ждать милостей от Природы: если она по какой-то причине «не додумалась» сделать светящиеся растения, «венец творения» готов сам взяться за это дело.

«Bioglow» – компания, создавшая концепт светящегося растения

В природе нет светящихся растений, потому что растения не нуждаются в биолюминесценции. В микромире свечение – это побочное явление при пищеварении: нейтрализация активного кислорода ферментами бактерий при расщеплении глюкозы. Светлячки и маленькие кальмары-ватазении используют свет для привлечения партнёров, медузы – в качестве шоковой защиты от тех, кто пытается их съесть.


Светящийся от планктона океан

Также есть охотники, привлекающие своих жертв свечением собственного тела. А некоторые виды глубоководных кораллов, по мнению учёных, способны слабый коротковолновый свет, проникающий в глубину, трансформировать в более яркие вспышки. Это явление используется как фитоподсветка для возможности фотосинтеза симбиотических колоний водорослей, живущих в коралловых зарослях.

Растениям светиться ни к чему. Поэтому потребовалось вмешательство генной инженерии, десятилетия работы и солидные капиталовложения. Хлоропласты растений – полуавтономные пластиды, существующие в симбиозе с растениями. Согласно гипотезе, когда-то они были самостоятельными, как и родственные хлоропластам цианобактерии, способные к свечению. Александр Кричевский (Сент-Луис, США) – специалист в двух областях: изучении явления биолюминесценции морских бактерий и микробиологии растений. У учёного возникла мысль об объединении двух хорошо знакомых ему дисциплин, что он и сделал, создав биотехнологическую компанию «Bioglow, Inc».

Starlight Avatar: воплощение звездного света

Компанией Александра Кричевского был создан концепт светящегося растения – «Starlight Avatar®».


Starlight Avatar — светящееся растение табака. Фото с сайта bioglowtech.com

Свечение Starlight Avatar (растения табака) основано на внедрении в геном растения части гена светлячка – молекулы люциферазы. Чтобы Starlight Avatar светился, необходим катализатор – реакция свечения происходит при окислении люциферазы под действием кислорода в присутствии фермента люциферина. Люциферин содержался в питательной среде, в которой выращивалось растение.


Свечение нового поколения генно-модифицированных растений (слева) в сравнении с Starlight Avatar (справа). Фото с сайта bioglowtech.com

В 2014 году на аукционе компанией Bioglow было продано двадцать экземпляров светящихся Starlight Avatar, растущих в специальных контейнерах. Пока этот свет очень слабый, но лаборатория Александра Кричевского работает над увеличением яркости.

Пока – из области фантастики

В планах Bioglow – создание растений, которые не только смогут украсить ландшафт ночью, но и помогут сэкономить на уличном освещении. Но пока светящиеся растения – это из области фантастики. Starlight Avatar испускает свет, только если его поливать соответствующим раствором.

Российские учёные, работающие над исследованием биолюминесценции и созданием самостоятельно светящихся растений в лаборатории биомолекулярной спектроскопии Института биоорганической химии Российской Академии наук под руководством Ильи Ямпольского, считают, что пока ещё рано планировать клумбы на своих участках с учётом светящихся в темноте роз или пионов и выкорчёвывать живую изгородь, чтобы поменять её на светящуюся.

Они называют биолюминесценцию растений одним из самых амбициозных проектов: «Идеальный вариант, который пока не удался никому, включает в себя расшифровку всего пути биосинтеза люциферина, который может быть многоэтапным процессом с участием большого числа белков. Потом – встраивание в геном другого организма генов, кодирующих все эти белки и люциферазу. На данный момент расшифрован биосинтез только бактериального люциферина, однако эта система тяжело адаптируется к растениям и животным. И реализация такого подхода представляется маловероятной».


Дорожка со светящимся гравием. Фото с сайта passages-ivm.com

Семян светящихся цветов пока ещё купить нельзя (если вы, конечно, не заплатили 40 $ за гипотетическую возможность получить семена генно-модифицированной резуховидки Таля в краудфандинговом проекте GLOWING PLANTS). Но не расстраивайтесь: зато можно приобрести искусственные светящиеся камни – для декора дорожек на своём участке, создания альпийских горок, видимых и в темноте, и даже для отделки фасада дома. Ну, или на крайний случай – хотя бы для декорирования аквариума.

5 биолюминесцентных живых организмов, которые освещают мир

Тот, кто когда-либо ловил светлячков и садил их в стеклянную банку, наверняка до сих пор помнит очаровательное свечение этих живых организмов. Светлячки наиболее известные

Природа освещает себя сама

Тот, кто когда-либо ловил светлячков и садил их в стеклянную банку, наверняка до сих пор помнит очаровательное свечение этих живых организмов. Светлячки наиболее известные биолюминесцентные существа, но, оказывается, это явление удивительно распространено в природе. Не удивительно, что дизайнеры все чаще задумываются о создании бесплатного источника энергии для освещения.

Природа освещает себя сама

В последние годы, ряд ученых добился успеха с внесением генетического материала, отвечающего за биолюминесценцию, в растения, которые обычно не светятся в темноте. Цель состоит в том, чтобы в конечном итоге вывести светящиеся деревья, которыми можно будет заменить уличные фонари, а также комнатные растения, которые заменят бытовые лампы. Это позволит сэкономить огромное количество электрической энергии. Рассмотрим некоторые виды этих увлекательных существ, которые послужили вдохновением для ученых.

Светляки в природной обстановке

В семействе жуков Lampyridae есть около 2000 видов, большинство из которых производят свечение в своем животе. Чаще всего светлячки используют биолюминесценцию в процессе ухаживания за партнером, хотя некоторые экземпляры также используют этот эффект для привлечения добычи. Биология биолюминесцентного свечения светлячков изучалась в течение многих столетий, и ученые теперь имеют детальное понимание этого эффекта – биолюминесценция является результатом химического взаимодействия между люциферином (светящимся веществом), и люциферазой (ферментом, который является катализатором для люциферина.

Диковинный свет червей в пещерах

Arachnocampa является одним из видов, который живет в пещерах и гротах Австралии и Новой Зеландии. Это своеобразное существо вырабатывает шелковые нити подобно паукам, которые затем прикрепляют к потолкам в пещерах. Нити покрыты ядовитой слизью и предназначены для ловли добычи.

У ряда бактерий вида Vibrio есть биолюминесцентные способности, которые могут принимать различные формы. Зачастую на тропических курортах люди видят это свечение, когда волны ночью разбиваются о берег. В этом случае свечение срабатывает при движении волн. Также можно наблюдать свечение при плескании воды в темноте. Иногда эффект возникает в открытом океане, когда светятся сотни миль океанской поверхности. Люди назвали этот эффект “молочное море”.

Морской охотник ловит рыбу на удочку

Одной из самых интригующих и необычных рыб, которая использует биолюминесценцию, является морской черт. Эти причудливые существа имеют органы, называемые Illicium, которые торчат из их голов, и функционируют как удочки. Кончики этих органов заселены биолюминесцентными бактериями, которые служат в качестве приманки. Свечение привлекает других рыб в темной воде и рыба по сути сама заплывает в огромные, клыкастые челюсти морского черта.

Читать еще:  Почему не цветут пионы одни листья

Свет грибов в лесу

В некоторых темных лесах по всему миру земля светится, когда человек просто идет по тропе. Это является результатом деятельности грибов, которые живут в гниющей древесине на лесной почве. В отличие от большинства других биолюминесцентных организмов, принцип свечения в грибах менее понятен. Некоторые предполагают, что это используется для привлечения насекомых, которые питаются грибами и тем самым помогают распространять споры. Другие считают, что это служит для отпугивания хищников, поскольку свечение считается признаком токсичности многими существами.

Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:

Созданы нанобионические светящиеся растения

Рис. 1. Кустики жерухи обыкновенной (Nasturtium officinale) возрастом 3,5 недель, в которые были введены светящиеся наночастицы, освещают книгу («Потерянный рай» Джона Мильтона). Фотография сделана с большой экспозицией (5 минут) и высокой светочувствительностью (ISO 3200), а для того, чтобы на страницы книги попадало больше света, позади растения разместили отражающий экран (лист бумаги). Изображение из обсуждаемой статьи в Nano Letters

Ученые из Массачусетского технологического института продвинулись к воплощению в реальность пока еще фантастической идеи — сделать из растений источник света. Внедрив в листья жерухи обыкновенной (Nasturtium officinale) специальным образом разработанные наночастицы, они придали растению способность в течение почти четырех часов светиться тусклым, но заметным светом. Предполагается, что дальнейшая оптимизация подхода позволит увеличить как яркость свечения, так и его время, и в обозримом будущем растения смогут светиться достаточно ярко.

Группа профессора Массачусетского технологического института Майкла Страно (Michael S. Strano) уже длительное время занимается нанобионическим изменением растений. Ученые внедряют в их клетки разные типы наночастиц, чтобы придать растениям новые свойства. Например, этой группе удалось в три раза повысить эффективность фотосинтеза в клетках резуховидки Таля (Arabidopsis thaliana) и извлеченных из них хлоропластах (J. P. Giraldo et al., 2014. Plant nanobionics approach to augment photosynthesis and biochemical sensing). Страно с коллегами также пытаются заставить растения выполнять задачи, которые в настоящее время решаются с применением электрических приборов. В частности, им удалось научить шпинат определять наличие в почве нитросодержащих веществ (в том числе и взрывчатых) и сигнализировать об этом (M. H. Wong et al., 2017. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics).

Еще одна цель, которую поставили перед собой ученые, — создание растений, способных решить проблему освещения. На то, чтобы в наших домах, на рабочих местах и на улицах было светло, расходуется около 20% от всей вырабатываемой электроэнергии. Если хотя бы часть освещения, например уличного, возьмут на себя растения, это даст существенную экономию. До работ Страно в попытках создания светящихся растений использовалась исключительно генетическая модификация: растениям «прививали» либо ген светлячка, отвечающий за выработку этими насекомыми светящихся белковых молекул (D. W. Ow et al., 1986. Transient and Stable Expression of the Firefly Luciferase Gene in Plant Cells and Transgenic Plants), либо состоящий из шести генов оперон, позволяющий светиться бактериям (A. Krichevsky et al., 2010. Autoluminescent Plants). В результате этих экспериментов были созданы растения, способные светиться, однако это свечение было очень малоинтенсивным — всего около 10 7 фотонов в минуту (для сравнения, обычная стоваттная лампочка «выделяет» порядка 10 20 фотонов в секунду).

Свечение насекомых возникает из-за хемилюминесцентной реакции: фермент люцифераза катализирует окисление люциферина кислородом, в результате чего образуется оксилюциферин и выделяется свет. Еще один участник этого механизма — молекула кофермента А — взаимодействует с продуктами окисления, способными понизить (или даже свести на нет) каталитическую активность фермента люциферазы, ингибируя их действие. Ученые также попробовали использовать этот способ, но доставлять хемилюминесцентные реагенты в растения (люциферазу и люциферин растения не вырабатывают) они собирались при помощи специальных наночастиц (рис. 2).

Рис. 2. Механизм хемилюминесценции люциферазы светлячков в присутствии наночастиц. В присутствии аденозинтрифосфата (на схеме — ATP), кислорода (O2) и ионов магния (Mg 2+ ) люциферазы светлячка (Luc, розовые пятна), иммобилизованные на наночастицах из оксида кремния (на схеме наночастицы изображены серыми сферами, агрегат наночастиц и люциферазы обозначен SNP-Luc), катализируют окисление люциферина (LH2, оранжевые точки), который высвобождается из загруженных люциферином наночастиц, изготовленных из сополимера молочной и гликолевой кислот (PLGA-LH2). Люциферин «запечатан» в наночастицах с помощью поливинилового спирта (PVA). В результате окисления образуется дегидролюциферил-аденилат (L-AMP) — сильный ингибитор люциферазы. Кофермент А (CoA, синие точки), высвобождаемый из хитозановых наночастиц (CS-CoA, желтая сфера), борется с ингибирующим эффектом дегидролюциферил-аденилата, восстанавливая активность люциферазы. Рисунок из обсуждаемой статьи в Nano Letters

Главная проблема, которая мешает растениям светиться за счет люциферина, заключается в том, что весьма сложно локализовать в той области растения, в которой происходит выработка ряда необходимых для хемилюминесценции субстратов, например аденозинтрифосфата (АТФ), высокую концентрацию люциферина, не вредя при этом самому растению. Люциферин опасен для растительных клеток в концентрациях выше 400 мкмоль/л, в то время как для эффективной хемилюминесценции, которая позволит наблюдать свечение невооруженным глазом, необходима концентрация не менее 1000 мкмоль/л.

Наночастицы, в которых были связаны все три реагента — люцифераза, люциферин и кофермент А, — как раз и были использованы для того, чтобы обезопасить растения от токсичного для них люциферина. Для каждого реагента была подобрана своя наночастица, а все три типа нанопереносчиков состояли из веществ и материалов, которые по стандартам Управления США по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) определяются как «в основном безвредные». Благодаря такому подходу реагенты постепенно поступают в растительные клетки, медленно высвобождаются и вступают в реакции, обеспечивающие свечение, не достигая при этом токсичных концентраций и не повреждая растения (рис. 3).

Рис. 3. Меченые наночастицы из оксида кремния (SNP-AF) и из сополимера молочной и гликолевой кислот (PLGA-Bodipy) в листьях жерухи обыкновенной, рукколы и шпината. Изображение получено с помощью флуоресцентной конфокальной микроскопии. Красным и сине-зеленым обозначены соответственно мембраны клеток и хлоропласты. Изображение из обсуждаемой статьи в Nano Letters

Для переноса фермента люциферазы исследователи использовали наночастицы диаметром 12 нм из оксида кремния. Для переноса люциферина и кофермента А применялись сферические наночастицы большего размера — 215 и 125 нм, соответственно. Наночастицы для переноса кофермента А были изготовлены из хитозана — производного природного полимера хитина, а наноконтейнеры для люциферина — из биоразлагаемого сополимера молочной и гликолевой кислот. Чтобы вещества, участвующие в процессе хемилюминесценции, попали в листья растений, содержащие их наночастицы суспендировали в воде.

Затем в эту воду погружали каждое растение и в специальном устройстве, нагнетая давление, вводили наночастицы в листья через устьичные щели (рис. 4). Как было установлено, скорость увеличения давления влияет на эффективность накопления наночастиц листьями. Так, при росте давления со скоростью 0,4 атм/с наблюдается максимальное поглощение наночастиц листьями, которое завершается за 3 секунды. Но, как показало изучение листьев под микроскопом, при этом повреждается паренхима листьев. Оказалось, что наиболее успешно наночастицы проникают в листья (не повреждая их мембраны) при скорости нагнетания давления 0,04 атм/с, а скорости нагнетания 0,02 атм/с уже недостаточно для введения наночастиц в листья.

Читать еще:  Многолетние растения в саду и на даче

Рис. 4. Ванна для введения наночастиц через устьичные щели растений при повышенном давлении. Росток жерухи обыкновенной полностью погружен в воду, которая подается под давлением. Направление приложения повышенного давления показано желтой стрелкой, а синие стрелки указывают на то, что наночастицы попадают в листья через устьичные щели на обеих сторонах листьев. Рисунок из обсуждаемой статьи в Nano Letters

Частицы, высвобождающие люциферин и кофермент А, были спроектированы таким образом, чтобы (в первую очередь из-за размера) они могли накапливаться во внеклеточной области мезофилла — внутренней части листа, в то время как меньшие по размеру частицы, играющие роль переносчиков люциферазы, могут накапливаться в клетках, образующих мезофилл (рис. 5). Наночастицы из хитозана и сополимера гликолевой и молочной кислот медленно разрушаются, постепенно высвобождая люциферин и кофермент А. Низкомолекулярные вещества постепенно попадают в клетки растения, люцифераза катализирует дающее свечение окисление люциферина, кофермент А обеспечивает постоянную активность фермента, препятствуя его дезактивации, и листья растения начинают светиться.

Рис. 5. Схематическая иллюстрация поведения наночастиц в листьях. Наночастицы, содержащие люциферазу, люциферин и кофермент А, попадают в листья через устьичные щели с обеих сторон листа. Меньшая по размеру наночастица SNP-Luc может внедриться в мезофилл и цитозоль, в то время как большие по размеру PLGA-LH2 и CS-CoA остаются в мезофилле, высвобождая люциферин (LH2, оранжевые точки) и кофермент А (CoA, синие точки) по мере набухания и биоразложения полимерных наночастиц. Высвобожденные люциферин и кофермент А попадают в цитозоль, где при высокой концентрации АТФ протекает реакция окисления люциферина, одним из результатов которой является люминесценция. Рисунок из обсуждаемой статьи в Nano Letters

Также было продемонстрировано, что светящееся растение можно «выключить», добавив в воду, в которой стоит росток, ингибитор люциферазы. Это в перспективе позволит не только в нужное время тушить свет от светящихся растений, но и создать организмы, способные самостоятельно прекращать светиться, реагируя на изменения в состоянии окружающей среды — например, «отключаясь» во время наступления светлого времени суток.

Первые эксперименты позволили получить растения, которые могли светиться около 45 минут, после чего люциферин расходовался, и свечение прекращалось. В ходе работы над проектом время свечения было увеличено до 3,5 часов. Свет, который создает росток жерухи обыкновенной высотой 10 см, хотя он и в тысячи раз интенсивнее света от ГМО-растений (в среднем 3×10 10 фотонов в минуту), нельзя назвать интенсивным: при этом свете читать невозможно. Свечение, которым удалось заставить светиться другие растения, изученные в рамках эксперимента, — рукколу и шпинат, — было еще слабее, но эксперименты с ними показали, что подход Страно универсален. Чтобы зафиксировать свечение жерухи с помощью обычного фотоаппарата (рис. 1), потребовалась долгая выдержка при высокой светочувствительности. Тем не менее Страно с коллегами уверен, что дальнейшая работа над нанобионическими растениями позволит увеличить и время свечения растения, и интенсивность света. Для этого надо еще лучше оптимизировать скорость высвобождения участников реакции хемилюминесценции из наноконтейнеров.

Другое направление развития этой технологии — разработка процесса, облегчающего проникновение наночастиц в листья растений. Желательно, чтобы можно было просто опрыскать дерево или кустарник суспензией, содержащей соответствующие наноконтейнеры с реагентами для хемилюминесценции. Но это — перспектива далеко не ближайшего будущего.

10 фантастических растений «Аватара», растущие на нашей Земле

В ы думаете, что гигантские деревья, светящиеся грибы, цветы, которые выглядят словно птицы, и растения, наполовину животные принадлежат исключительно кино? На самом деле, многие открытия, которые делают ученые в фильме «Аватар», уже обнаружены на нашей планете. И возможно, если их собрать воедино, получится похожая картинка?

1. Гигантские деревья.

Если вы представляете себе самое большое дерево, которое вы когда-либо видели, а затем умножаете его на 10, вы можете приблизиться к тому, насколько велика огромная секвойя. Эти деревья растут естественным образом в горном массиве Сьерра-Невада в Калифорнии и являются разновидностями семейства кипарисов.
Самое высокое известное дерево в мире – прибрежная красная секвойя Гиперион, примерно достигающая 38-этажного здания. А с точки зрения объема приз получает гигантская секвойя генерал Шерман, имеющая почти 2 тонны живого веса. Это, конечно, не настолько велико как на вымышленной планете из «Аватар», но тем не менее колоссально. К тому же, деревья продолжают расти.


Фото: мир Аватара

2. Застенчивое растение.

Растение, закрывающее листья после того, как к нему прикоснутся, кажется, может принадлежать только к миру фантастических аватаров. Однако урожаи Пандоры имеют близкий эквивалент и на Земле. Mimosa pudica is (мимоза стыдливая) – ядовитый абориген тропиков. Когда воздух перемещается вокруг растения или что-то контактирует с листьями, они складываются.


Фото: мир Пандоры

3. Светящиеся грибы.

Хотя в наших лесах еще нет такой мифической биолюминесценции, как в фильме «Аватар», существует множество видов грибов, которые светятся в темноте. Одним из самых впечатляющих является Mycena chlorophos (мицена хлорофос) – японский гриб, который излучает неоновые зеленые свечения, как только наступает темнота. Он делает это, используя тот же механизм, с помощью которого глубоководные существа, такие как Anglerfish (морской дьявол), создают свое собственное световое шоу.


Фото: реальный мир Аватара

4. Светящиеся водоросли.

Еще одно фантастическое растение, которое светится в темноте, живет в удивительном месте – океан! Тип водорослей под названием Noctiluca scintillans (ночесветка или морской блеск) создает невероятные пейзажи сверкающего берега на Карибском острове Пуэрто-Рико. Формы водорослей настолько малы, что тысячи из них могут содержаться только в одной капле воды. Ночесветка реагирует на любые движения, рокот волн или плеск весел, создавая сильное сияние. А рыбы, как правило, держатся подальше от этих светящихся зон.


Фото: природа Аватара

5. Цветок, похожий на птицу.

Научное название Strelitzia reginae (стрелиция королевская) на самом деле не оправдывает этого впечатляющего цветка. Его обиходная кличка – райская птица, является гораздо более информативной. Выходец из Южной Африки, достигая взрослого возраста, выглядит как красочная птица. Стрелиция королевская точно бы не казалась неуместной на Пандоре.


Фото: природа Пандоры

6. Огромные кувшинки.

Возможно, вы видели фотографии ребенка, сидящего на огромной подушке из водяной лилии, и предположили, что это просто еще одна демонстрация чудес фотошопа. А ведь на самом деле – это чудеса тропического леса Амазонки. Огромная кувшинка Victoria amazonica (виктория амазонская) готова принять на свой борт любого, весом не более 50 килограмм и габаритами, вписывающимися в 2,5 метра. Но для идеальной гармонии, нашей Земле не мешало бы обзавестись гигантскими лягушками. Вы «ЗА»?


Фото: фантастическая природа

7. Быстрорастущий бамбук.

Если вы занимаетесь садоводством и вам знакома ситуация, когда сорняки выползают снова прямо на глазах, то это скорее всего зеленая паранойя. Но … некоторые растения действительно быстро растут. Бамбук Phyllostachys edulis (панцирь черепахи) может расти с точностью до 1 метра в сутки в своей естественной среде обитания в Китае. Кстати, быстрорастущий бамбук часто ошибочно принимают за дерево, хотя в действительности он является древесной травой. Вот если бы такая сорная травка переселилась на наши огороды … Только за 1 час бамбук набирает 4 сантиметра. Разве это не фантастично для этого мира?

Читать еще:  Характерные признаки пионовидных роз


Фото: мир фильма Аватара

8. Жалящее дерево.

Если одного названия Gympie-Gympie (жалящее дерево) не достаточно, чтобы заставить вас убежать, вы можете пересмотреть свое решение, когда услышите, что оно делает. Найденный в Австралии кустарник выглядит совершенно безобидно, но каждая его часть покрыта пушистыми волосками, способными совершить злобный укус. Боль от ожога этой гиганской крапивы может длиться месяцами и привести человека к безумию и самоуничтожению.


Фото: мир Пандоры

9. Нерушимое дерево.

Большинство людей слышали о Gingko biloba (гинкго билоба) как о модном источнике лекарственного дополнения и как о дереве времен динозавров. Однако самая удивительная история о нем связана с бомбардировкой Хиросимы. После немыслимого взрыва почти все в том районе было полностью разрушено, а растущее в тамошнем саду Сюккэйэн дерево гинкго продолжило процветать и пустило новые ветви. По сей день никто не знает, как это возможно, но это показывает, что у деревьев гингко билоба есть фантастические способности подниматься из пепла.


Фото: мир фильма Аватар

10. Растение-животное.

Ученые, изучающие Пандору, нашли то, что они назвали зооплантами – растения, имеющие как растительные, так и животные характеристики. Это может показаться надуманным, но наша планета уже является домом для некоторых видов, которые соответствуют этим критериям. Например, Sea anemones (морские анемоны). Возможно, «Аватар» не настолько фантастичный?


Фото: фантастические растения

Биолюминесценция в каждый дом. Почему так сложно сделать светящиеся растения

Светящееся растение? Нет, не видели

— Я когда-нибудь получу свое растение? Уже годы прошли. Мне просто любопытно.

— Как мне получить свои 40 долларов обратно?

— Я уже махнул рукой на это дело и считаю, что просто потерял деньги.

Такие комментарии в избытке можно найти на странице проекта Glowing plant в Facebook. В 2013 году группа ученых начала кампанию по сбору денег на создание светящихся растений. Идея авторов проекта звучит довольно просто по нынешним временам: взять гены, которые позволяют бактериям светиться, собрать из них единый фрагмент, вставить нужную последовательность в геном резуховидки и получить светящееся растение. Поначалу все шло отлично — проект собрал почти полмиллиона долларов. Но никаких светящихся растений его подписчики так и не увидели, а авторы переключились на создание мха, пахнущего пачулями.

Растения, рыбы и бактерии

Ученые за последние годы создавали кошек, кроликов и даже овец, которые могут светиться благодаря встроенным в их ДНК генам флуоресцентных белков. Есть даже декоративные рыбки GloFish, которые продаются для домашних аквариумов.

«GloFish — это рыбы, которые светятся благодаря флуоресцентным белкам. В природе такие белки встречаются у многих медуз, некоторых рачков и даже наших с вами далеких родственников, самых примитивных хордовых — ланцетников. Эти белки искусственно внедрены с помощью методов генной инженерии во многие другие организмы: в столь успешно продающихся GloFish, в мышей, а также во многие растения», — рассказал Ямпольский.


Флуоресцентные рыбки GloFish

Флуоресцентные белки также получили широкое распространение в молекулярной биологии, поскольку их можно использовать в качестве метки, которая будет вырабатываться вместе с определенным белком и позволит посмотреть, когда этот белок начинает образовываться в организме и где именно.

«Почему же при этом рыбы продаются, а растений в продаже мы не видим? Ответ кроется в природе флуоресценции: флуоресцентные белки светятся только в ответ на облучение их светом. Как во многих процессах, часть энергии теряется, и на выходе получается свет с другой длиной волны, то есть другого цвета. GloFish светятся не всегда, а только если на них светить ультрафиолетом, вот тогда они и становятся похожи на модниц на дискотеке», — объяснил ученый.


Флуоресцентные мышата

Сложнее, чем кажется

Идея проекта Glowing Plant в том, что растение должно светиться само по себе, а для этого нужен другой механизм — биолюминесценция.

Биолюминесценция — это свечение живых организмов, и встречается она среди тысяч очень различающихся видов, в основном морских. «Для того чтобы применять биолюминесценцию, необходимо знать, как она работает, но для многих организмов на этот вопрос до сих пор нет ответа. В основе природы свечения всегда лежит химическая реакция, а вот химическое строение ее участников — индивидуальная особенность каждого организма. Этим мы и занимаемся. Наша основная задача — узнать, как устроены светящиеся молекулы люциферин и люцифераза и как происходит сама химическая реакция», — рассказал Ямпольский.

Заставить растение или другой организм светиться благодаря механизму биолюминесценции — куда более сложная задача, чем просто встроить в ДНК ген флуоресцентного белка. В относительно простом варианте, который был реализован уже в 1986 году, в ДНК табака встроили ген люциферазы светлячка и поливали растение раствором с люциферином. Получившийся в результате табак действительно светился, что можно увидеть на его фотографии, сделанной с выдержкой в 24 часа.

«Идеальный вариант, который пока не удался никому, включает в себя расшифровку всего пути биосинтеза люциферина, который может быть многоэтапным процессом с участием большого числа белков. Потом — встраивание в геном другого организма генов, кодирующих все эти белки и люциферазу. На данный момент расшифрован биосинтез только бактериального люциферина, однако эта система тяжело адаптируется к растениям и животным. И реализация такого подхода мне представляется маловероятной», — отметил исследователь.


«Лампа» из генетически модифицированных светящихся бактерий кишечных палочек

«По разным оценкам, существует около 40 различных люциферинов и механизмов биолюминесценции. До недавнего времени было известно лишь семь структур люциферинов. Однако благодаря работе нашего научного коллектива за последние три года были установлены еще три новые структуры — люциферина сибирского почвенного червя вида Fridericia heliota, а также люциферина и люциферазы высших грибов. Мы не только знаем, как устроены эти молекулы, — мы умеем их синтезировать, понимаем, как именно происходят химические реакции свечения, умеем запускать их в пробирке и даже управлять цветом, правда, пока ограниченно. На подходе — структура люциферина многощетинкового червя, в более ранней стадии исследования — еще несколько объектов: моллюски, полихеты, акулы и другие», — рассказал исследователь.

Возможности применения биолюминесценции многообразны. В промышленности — для быстрого определения бактериального загрязнения, в науке — для изучения различных процессов, например при создании лекарственных препаратов. На сегодняшний день оборот биолюминесцентных технологий оценивается в миллиарды долларов в год.

«Задача создания биолюминесцирующего растения — одна из самых амбициозных и интересных с научной точки зрения. Однако мы еще не вышли на завершающий этап и хвастаться пока не будем. Тем не менее мы трудимся в этом направлении и, возможно, однажды сможем подарить миру самостоятельно светящееся растение», — сказал ученый.

Материал помогали готовить коллеги Ильи Ямпольского — Надежда Маркина и Зинаида Осипова.

Екатерина Боровикова

Ссылка на основную публикацию
Adblock
detector